Asymptotic stability of Webster-Lokshin equation

نویسندگان

  • Denis Matignon
  • Christophe Prieur
چکیده

The Webster-Lokshin equation is a partial differential equation considered in this paper. It models the sound velocity in an acoustic domain. The dynamics contains linear fractional derivatives which can admit an infinite dimensional representation of diffusive type. The boundary conditions are described by impedance condition, which can be represented by two finite dimensional systems. Under the physical assumptions, there is a natural energy inequality. However, due to a lack of the precompactness of the solutions, the LaSalle invariance principle can not be applied. The asymptotic stability of the system is proved by studying the resolvent equation, and by using the Arendt-Batty stability condition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

STABILITY OF THE JENSEN'S FUNCTIONAL EQUATION IN MULTI-FUZZY NORMED SPACES

In this paper, we define the notion of (dual) multi-fuzzy normedspaces and describe some properties of them. We then investigate Ulam-Hyers stability of Jensen's functional equation for mappings from linear spaces into  multi-fuzzy normed spaces. We establish an asymptotic behavior of the Jensen equation in the framework of multi-fuzzy normed spaces.

متن کامل

Coupling between hyperbolic and diffusive systems: A port-Hamiltonian formulation

The aim of this paper is to study a conservative wave equation coupled to a diffusion equation. This coupled system naturally arises in musical acoustics when viscous and thermal effects at the wall of the duct of a wind instrument are taken into account. The resulting equation, known as Webster-Lokshin model, has variable coefficients in space, and a fractional derivative in time. This equatio...

متن کامل

Asymptotic aspect of quadratic functional equations and super stability of higher derivations in multi-fuzzy normed spaces

In this paper, we introduce the notion of multi-fuzzy normed spaces and establish an asymptotic behavior of the quadratic functional equations in the setup of such spaces. We then investigate the superstability of strongly higher derivations in the framework of multi-fuzzy Banach algebras

متن کامل

stability of the quadratic functional equation

In the present paper a solution of the generalizedquadratic functional equation$$f(kx+ y)+f(kx+sigma(y))=2k^{2}f(x)+2f(y),phantom{+} x,yin{E}$$ isgiven where $sigma$ is an involution of the normed space $E$ and$k$ is a fixed positive integer. Furthermore we investigate theHyers-Ulam-Rassias stability of the functional equation. TheHyers-Ulam stability on unbounded domains is also studied.Applic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017